"How old are you?" : Age Estimation with Tensors of Binary Gaussian Receptive Maps
نویسندگان
چکیده
To compute the Tensorial representation, first we divide each BGn (θ) of each image into non-overlapping rectangular sub-regions with a specific size. A set of histograms is then computed for each sub-region and finally each histogram is organized in four different 3-D tensors, where each tensor corresponds to an specific derivative order of the Binary Gaussian Receptive maps. The characteristic equation of T (BGn (θ)) is shown as follows:
منابع مشابه
Receptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملRobust Estimation of Kurtosis and Diffusion Tensors in Diffusional Kurtosis Imaging
Diffusion of water molecules in biological tissues is conventionally quantified via diffusion tensor imaging (DTI) [1]. DTI enables a Gaussian approximation to the probability distribution governing the random displacement of water molecules. In some circumstances of great interest, however, the displacement probability distribution can deviate considerably from a Gaussian form. Diffusional kur...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملLecture 1 : Tensor Methods in Machine Learning
Figure 1.1: Visualization of Tensors of different orders. gained popularity in parameter estimation for a variety of problems. In this lecture, the focus is on how they may be used in estimating the parameters of Gaussian Mixture Models and Hidden Markov Models. In a Gaussian mixture model, there are k unknown n-dimensional multivariate Gaussian distributions. Samples are generated by first pic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010